| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263 |
- # Load libraries
- from pandas import read_csv
- from pandas.plotting import scatter_matrix
- from matplotlib import pyplot
- from sklearn.model_selection import train_test_split
- from sklearn.model_selection import cross_val_score
- from sklearn.model_selection import StratifiedKFold
- from sklearn.metrics import classification_report
- from sklearn.metrics import confusion_matrix
- from sklearn.metrics import accuracy_score
- from sklearn.linear_model import LogisticRegression
- from sklearn.tree import DecisionTreeClassifier
- from sklearn.neighbors import KNeighborsClassifier
- from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
- from sklearn.naive_bayes import GaussianNB
- from sklearn.svm import SVC
- # Load dataset
- url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/iris.csv"
- names = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'class']
- dataset = read_csv(url, names=names)
- # shape
- print(dataset.shape)
- # head
- print(dataset.head(20))
- # descriptions
- print(dataset.describe())
- # box and whisker plots
- dataset.plot(kind='box', subplots=True, layout=(2,2), sharex=False, sharey=False)
- pyplot.show()
- # Split-out validation dataset
- array = dataset.values
- X = array[:,0:4]
- y = array[:,4]
- X_train, X_validation, Y_train, Y_validation = train_test_split(X, y, test_size=0.20, random_state=1)
- # Spot Check Algorithms
- models = []
- models.append(('LR', LogisticRegression(solver='liblinear', multi_class='ovr')))
- models.append(('LDA', LinearDiscriminantAnalysis()))
- models.append(('KNN', KNeighborsClassifier()))
- models.append(('CART', DecisionTreeClassifier()))
- models.append(('NB', GaussianNB()))
- models.append(('SVM', SVC(gamma='auto')))
- # evaluate each model in turn
- results = []
- names = []
- for name, model in models:
- kfold = StratifiedKFold(n_splits=10, random_state=1, shuffle=True)
- cv_results = cross_val_score(model, X_train, Y_train, cv=kfold, scoring='accuracy')
- results.append(cv_results)
- names.append(name)
- print('%s: %f (%f)' % (name, cv_results.mean(), cv_results.std()))
- # Compare Algorithms
- pyplot.boxplot(results, labels=names)
- pyplot.title('Algorithm Comparison')
- pyplot.show()
|